If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-31x-7=0
a = 20; b = -31; c = -7;
Δ = b2-4ac
Δ = -312-4·20·(-7)
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-39}{2*20}=\frac{-8}{40} =-1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+39}{2*20}=\frac{70}{40} =1+3/4 $
| 2(x-3)+(3x-6)=18 | | -3(4x+4)+3x-1=-28 | | 4(1+7n)=5(5n-4) | | 2+4-6=a+3a | | -3(-4x+4)+3-1=-28 | | 4-6(6+7k)=-32+3k | | 8-5(n+5)=-37+5n | | 5(6x+4)=-34+3x | | 5r+4+8=-13+1+8r+r | | -8a=16 | | 3+6v=-4+3v+7-5v | | 9a+6=3a+2 | | 9x+4.5-2=2.3+7x+2.2 | | -15-13u=-10u | | 64=8(5-7x)+6(4-8x) | | -15−13u=-10u | | 4+8a=2a-8 | | -2(d-15)=-10 | | -2(d−15)=-10 | | 0=6(b+3)+6(b+7) | | 7(x+2)-6=8x+2-4 | | 119=-8x-7(x-2) | | x=1.2(x/4) | | 12p+-14p=2 | | 2(1.5m+3)=2(12/5m+3) | | 11g=12g-20 | | 24u-16-3u=6u-12-1 | | -8(1-4x)-4x=-148 | | 11g=12g−20 | | 19w=20w+20 | | 7x+-15=41 | | 6p-2p=-16 |